

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 63 (2003) 883-886

www.elsevier.com/locate/phytochem

Mulinane-type diterpenoids from *Mulinum spinosum*[☆]

Alejandra I. Chiaramello, Carlos E. Ardanaz, Eduardo E. García, Pedro C. Rossomando*

Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700 BWS, San Luis, Argentina

Received 6 December 2002; received in revised form 19 May 2003

Abstract

In addition to the known mulinolic and mulinenic acids, two diterpenoids, mulin-11-ene-13- α ,14- α -dihydroxy-20-oic and mulin-12-ene-14-one-20-oic acids, were isolated from the aerial parts of *Mulinum spinosum* (Cav.) Pers. (Apiaceae). Their structures were determined based on spectroscopic studies.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Mulinum spinosum; Apiaceae; Diterpenoid; Mulinane derivatives; Mulin-11-ene-13-α,14-α-dihydroxy-20-oic acid; Mulin-12-ene-14-one-20-oic acid

1. Introduction

Mulinum (Apiaceae) is a genus of 15–20 species confined to Argentina, Bolivia and Chile (Constance, 1988). M. spinosum (Cav.) Pers. is a shrub of the central Andes in Argentina and Chile and Patagonia steppe in Argentina, where it is known as 'neneo' or 'yerba negra' and is used as a medicinal plant to treat dental neuralgias, hepatic diseases and altitude sickness (Ruiz Leal, 1972; San Martín, 1983). Previous studies on this plant reported the presence of resinic acids, α- and β-pinene and limonene (Riveros et al., 1982) as well as two mulinane diterpenoid acids, mulin-11,13-dien-20-oic acid and mulin-11,13-dien-17-hydroxy-20-oic acid (Nicoletti et al., 1996).

This paper describes the isolation and structural elucidation of two new mulinane derivatives, mulin-11-ene- $13-\alpha$, $14-\alpha$ -dihydroxy-20-oic acid (1) studied as its acetoxy derivative 1a, and mulin-12-ene-14-one-20-oic acid (2). The structure of 1 was established by spectroscopic analysis and on chemical grounds while that of 2 was determined by spectroscopic analysis only. Along with the new compounds 1 and 2, we isolated the known diterpenoids mulinolic (3) (Loyola et al., 1996) and

mulinenic (4) (Loyola et al., 1991) acids, both previously isolated from *M. crassifolium*.

2. Results and discussion

HREIMS of 1a showed, a peak consistent with the $[M-H_2O]$ ion, $(C_{22}H_{32}O_4)$, required m/z 360.23006, found m/z 360.231997). The ¹³C NMR spectrum of **1a** (Table 2) showed well-resolved resonances for all 22 carbons. DEPT analysis using a 90° angle, indicated two sp^2 methine carbons at δ_C 136.2 and 132.4, and five saturated methines at δ_C 75.2, 57.4, 50.7, 47.0 and 31.7. In addition, the DEPT 135° spectrum showed five methylene and five methyl carbons indicating that the carbons at $\delta_{\rm C}$ 180.1, 170.1, 72.2, 58.0 and 36.1 were quaternary, after comparison with the decoupled spectrum. The ¹H NMR (Table 1) and ¹³C NMR spectral data of 1a showed the presence of a tertiary hydroxyl group ($\delta_{\rm C}$ 72.2, s) and a secondary acetoxyl group ($\delta_{\rm H}$ 5.01, 1H, dd, J = 11.8, 2.9 Hz; $\delta_{\rm C}$ 75.2, d). The presence of the acetoxyl group was also evidenced by signals at 1736 cm⁻¹ (IR); $\delta_{\rm H}$ 2.09 (3H, s) (¹H NMR); $\delta_{\rm C}$ 21.3, q; and $\delta_{\rm C}$ 170.1, s (¹³C NMR). The ¹H NMR spectrum of **1a** showed signals due to five methyl groups at $\delta_{\rm H}$ 0.85 and 1.02 (both 3H, d, J = 5.5 Hz), δ_H 1.07, 1.31 and 2.09 (all of them 3H, s). Phase sensitive 2D COSY experiments indicated that the signals at $\delta_{\rm H}$ 0.85 and 1.02 were

^{*} This paper is a part of the A.I. Chiaramello Doctoral Thesis.

^{*} Corresponding author. Fax: +54-2652-426711.

E-mail address: prosso@unsl.edu.ar (P.C. Rossomando).

coupled with the signal at $\delta_{\rm H}$ 1.48 (1H, m). The heteronuclear correlation (HETCORR) spectrum showed cross-peaks between $\delta_{\rm H}$ 0.85 and $\delta_{\rm C}$ 22.7 and the signal at $\delta_{\rm H}$ 1.02 and $\delta_{\rm C}$ 22.3. The signal at $\delta_{\rm H}$ 1.07 showed connectivities with $\delta_{\rm C}$ 27.3. The above data revealed the presence of an isopropyl group and a tertiary methyl group. The fourth methyl group was attached to carbon bearing a hydroxyl group ($\delta_{\rm H}$ 1.31; $\delta_{\rm C}$ 29.3, q). Two deshielded carbon resonances at $\delta_{\rm C}$ 132.4, d and 136.2, d and two deshielded proton resonances at $\delta_{\rm H}$ 5.54 (d, J=12.4 Hz) and 5.76 (dd, J=12.4, 8.4 Hz) were assigned to a disubstituted olefinic double bond with a cis configuration. All the above data can be accomodated in the mulinane carbon skeleton as depicted in formula 1a.

Most of the relevant structural fragments of **1a** were identified by the heteronuclear long range correlations COLOC, aided by the phase sensitive COSY experiment. Correlations were observed between the signal at $\delta_{\rm H}$ 1.31 (3H, s, H-16) and the signals at $\delta_{\rm C}$ 132.4, d (olefinic C-12), $\delta_{\rm C}$ 72.2, s (C-13) and $\delta_{\rm C}$ 75.2, d (C-14). The signal at $\delta_{\rm H}$

Table 1

1H NMR^a spectral data for compounds 1a–3

	1a	2	3
Position	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$
3	2.44 ^b m		
4	$1.48^{\rm b} \ m$		
6			β 2.42 dd (9.9, 2.9)
9	2.09b dd (11.6, 8.4)		
10	$2.3^{\rm b} m$		
11	5.76 dd (12.4, 8.4)		5.58 m
12	5.54 d (12.4)	6.17 brd	5.58 m
14	5.01 dd (11.8, 2.9)		
15	α 2.83 dd (13.5, 11.8)	$\alpha \ 2.77 \ d \ (12.4)$	α 2.61 dd (14.8, 2.5)
	β 1.15 dd (13.5, 2.9)	β 2.33 d (12.4)	
16	1.31 s	$1.82\ d\ (2.3)$	1.32 s
17	1.07 s	1.04 s	0.94 s
18	0.85 d (5.5)	0.85 d (5.5)	$0.86\ d\ (5.6)$
19	1.02 d (5.5)	$1.01\ d\ (5.5)$	1.03 d (5.6)
OCO <u>C</u> H ₃	2.09 s		

^a At 200.13 MHz in CDCl₃. Chemical shifts are relative to TMS. (*J* in Hz).

5.76 (H-11) correlated with the resonance at $\delta_{\rm C}$ 72.2 (C-13). The resonance at $\delta_{\rm C}$ 170.1 assigned to the carbonyl group of the acetoxyl segment showed cross-peaks with $\delta_{\rm H}$ 2.83 (1H, dd, J= 13.5, 11.8 Hz, H-15 α). In addition HH COSY spectrum revealed δ correlations between H-14 and the α and β protons on C-15. A cross-peak between H-11 and H-9 at $\delta_{\rm H}$ 2.09 (1H, dd, J= 11.6, 8.4 Hz) was also observed. The C-17 protons ($\delta_{\rm H}$ 1.07, s) showed correlations with C-15, C-9 and C-8 carbons ($\delta_{\rm C}$ 36.6, t; 47.0, d and 36.1, s, respectively). Similarly, the H-18 ($\delta_{\rm H}$ 0.85, d) and H-19 ($\delta_{\rm H}$ 1.02, d) protons showed connectivities with C-3 ($\delta_{\rm C}$ 57.4, d) and C-4 ($\delta_{\rm C}$ 31.7, d) carbons.

The main results from phase sensitive NOESY spectra suggested that **1a** had the stereochemistry shown, in agreement with the relative stereochemistry of mulinolic

Table 2

13C NMR^a spectral data for compounds 1a–3

	1a	2	3
Position	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$
1	24.8 t	24.8 t	25.0 t
2	28.7 t	28.6 t	28.7 t
3	57.4 d	58.1 d	57.4 d
4	31.7 d	31.8 d	31.8 d
5	58.0 s	57.2 s	58.1 s
6	32.1 t	33.1 t	32.1 t
7	41.9 t	40.3 t	41.9 t
8	36.1 s	37.4 s	35.6 s
9	47.0 d	44.3 d	48.4 d
10	50.7 d	48.7 d	51.3 d
11	136.2 d	28.2 t	133.5 d
12	132.4 d	135.2 d	136.3 d
13	72.2 s	140.6 s	71.1 s
14	75.2 d	206.1 s	35.9 t
15	36.6 t	54.7 t	30.2 t
16	29.3 q	19.5 q	33.5 q
17	27.3 q	30.1 q	27.3 q
18	22.7 q	22.6 q	22.7 q
19	22.3 q	22.2 q	22.3 q
20	180.1 s	180.3 s	179.9 s
OCO <u>C</u> H ₃	21.3 q		
OCOCH ₃	170.1 s		

^a At 50.3 MHz in CDCl₃. The assignments were confirmed by HETCOR and COLOC experiments.

^b Overlapped signals. The chemical shifts of these protons were measured on the phase sensitive HH COSY and on HETCOR spectra.

acid (3) (Loyola et al., 1996). H-14 showed dipolar correlations with H-16 and H-17 protons, both with β configuration, that confirms the α -orientation of the acetate group on C-14. Other selected NOESY correlations were H-9/H-11, H-9/H-17, H-12/H-16 and H-3/H-19. Based on these findings we assigned **1a** the structure of mulin-11-ene-13- α -hydroxy-14- α -acetoxy-20-oic acid.

HREIMS of 2 showed an ion consistent with the molecular formula $C_{20}H_{30}O_3$ (required m/z 318.219495, found m/z 318.217643). The ¹³C NMR spectral data of **2** (Table 2) showed signals at δ_C 180.3, s (C-20) and δ_C 206.1, s (C-14) typical for a carboxylic acid and a ketone, respectively. Two carbons at $\delta_{\rm C}$ 135.2, d (C-12) and 140.6, s (C-13) together with the corresponding signal of one vinylic proton H-12 ($\delta_{\rm H}$ 6.17, brd) in the ¹H NMR spectrum (Table 1) indicated the presence of a trisubstituted double bond. The proton shift of the methyl signal at δ_H 1.82 (3H, d, J = 2.3 Hz, H-16) and its COLOC correlations with C-12, C-13 and C-14 as well as the C-14/H-12 cross-peak suggested the presence of an α,β -unsaturated ketone as depicted in 2. A connectivity between H-12 and H-16 in the phase sensitive H-H COSY spectrum reinforced the allylic relationship $(J_{12.16}=2.3 \text{ Hz})$. The location of the keto carbonyl group (C-14) was also evidenced by the strong deshielding of the C-15\beta proton compared with the same proton in 1a, as well as for its coupling pattern simplification [δ_{α} 2.77 and δ_{β} 2.33 (both d, J=12.4Hz)]. In addition the H-15α showed cross-peaks with H-17 ($\delta_{\rm H}$ 1.04, 3H, brs) with a $J_{15\alpha, 17} = 1.3$ Hz. On the other hand the H-17 showed COLOC correlations with C-7, C-8, C-9 and C-15 carbons at $\delta_{\rm C}$ 40.3, t; 37.4, s; 44.3, d and 54.7, t, respectively. A dipolar correlation between the signals at δ_H 2.33 (H-15 β) and δ_H 1.04 (H-17) confirms the proposed configuration of C-15 protons. Based on these findings we assigned 2 the structure of mulin-12-ene-14-one-20-oic acid.

3. Experimental

3.1. General

M.p. uncorr. Plant material was collected in Uspallata, Las Heras, Mendoza, Argentina, in March 2000 and voucher specimens (Del Vitto et al., N° 9092, UNSL) were deposited in the Herbario of Universidad Nacional de San Luis, San Luis, Argentina. CC: silica gel 60 (Merck), 0.063–0.200 mm; TLC: Kieselgel mit Fluoreszenz-Indicator UV₂₅₄ (Macherey-Nagel), 0.25 mm; IR: in the 4000–225 cm⁻¹ range with 32 scans using the KBr pellet technique. Spectral resolution: 4 cm⁻¹. (Nicolet Protégé 460 spectrometrer). NMR spectra was obtained using a Bruker AC-200 spectrometer. HRMS was performed on a Micromass, VG AutoSpec. EIMS: at 70 eV on GCQ Plus instrument with MS/MS.

3.2. Extraction and isolation of diterpenoids

Dried and finely powdered tissues from the aerial parts of M. spinosum (3.65 g) were extracted with acetone at room temp. $(3 \times 48 \text{ h})$. After filtration, the solvent was evapd. to dryness under red. pres. and low temp. yielding 330 g of dark syrup. The conc. acetone extract was fractionated on silica gel column (1 kg) with hexane and hexane-EtOAc mixtures of increasing polarity as elution solvents. The fraction hexane-EtOAc 30% (47.5 g) was separated on silica gel using the same elution solvents yielding 31.5 mg of 1 (hexane-EtOAc 20%). The fraction hexane-EtOAc 10% (24.5 g) was rechromatographed using the above conditions giving 25.7 mg of 2 (hexane-EtOAc 10%). Compound 1 (30 mg) was acetylated with Ac₂O and 4-dimethylaminepyridine in the usual manner, yielding 24 mg (72%) of pure 1a.

3.3. Mulin-11-ene-13- α -hydroxy-14- α -acetoxy-20-oic acid (1a)

Amber oil; $[\alpha]_D^{20}$ –82.4 (Me₂CO; c 0.26); IR $\nu_{\text{max}}^{\text{KBr}}$: cm⁻¹: 3300–2800 br, 1717 (COOH), 1736 (OCOCH₃), 1159, 1122, 876; ¹H NMR: Table 1; ¹³C NMR: Table 2; EIMS m/z (rel. int.): 360 [M⁺ –H₂O] (3), 318 [M⁺ HOAc] (20), 300 [318-H₂O] and [360-HOAc] (28), 285 [300-15] (9), 272 (66), 255 (34), 229 (100), 211 (23), 175 (29), 145 (26), 105 (42), 91 (36). HREIMS: found 360.231997 (calc. 360.23006 for $C_{22}H_{32}O_4$).

3.4. Mulin-12-ene-14-one-20-oic acid (2)

White solid; m.p.: 218–220 °C; $[\alpha]_D^{20}$ –46.1 (Me₂CO; c 0.36); IR $\nu_{\text{max}}^{\text{KBr}}$: cm⁻¹: 3300–2500 br, 1686 (COOH), 1671 (C=O), 1446, 1385, 954; ¹H NMR: Table 1; ¹³C NMR: Table 2; EIMS m/z (rel. int.): 318 [M⁺] (36), 300 [M⁺–H₂O] (7), 273 [M⁺–CO₂H] (40), 272 [M⁺–HCOOH] (80), 257 [M⁺–HCOOH–CH₃] (7), 229 [M⁺–HCOOH–C₃H₇] (75), 175 (100), 147 (27), 133 (40), 119 (34), 105 (65), 91 (47). HREIMS: found 318.217643 (calc. 318.219495 for C₂₀H₃₀O₃), found 272.213884 (calc. 272.214016 for C₁₉H₂₈O).

Acknowledgements

The authors appreciate the financial support from UNSL (Grant 7301). A. I. C. thanks UNSL for a Doctoral Fellowship. We thank Professor L. Del Vitto for the plant material classification. We are grateful to Dr. Víctor S. Martín García of the Instituto Universitario de Bio-Orgánica and Dr. Sergio Suarez of the Servicio de Espectrometría de Masas, both of the Universidad de La Laguna, Tenerife, Spain, for assistance in obtaining HREIMS spectra.

References

- Constance, L., 1988. Umbelliferae. Flora patagónica. Colección científica del INTA 8, 310.
- Loyola, L., Morales, G., Rodriguez, B., Jimenez-Barbero, J., Pedreros, S., de la Torre, M., Perales, A., 1991. Mulinenic acid, a rearranged diterpenoid from *Mulinum crassifolium*. J. Nat. Prod. 54, 1404.
- Loyola, L., Borquez, J., Morales, G., San Martín, A., 1996. Mulinolic acid, a diterpenoid from *Mulinum crassifolium*. Phytochemistry 43, 165.
- Nicoletti, M., Di Fabio, A., D'Andrea, A., Salvatore, G., van Baren, C., Coussio, D., 1996. Diterpenoid acids from *Mulinum spinosum*. Phytochemistry 43, 1065.
- Riveros, R., Morales, G., Loyola, L., 1982. Resinic acids from Mulinum spinosum. Bol. Soc. Chil. Quim. 27, 244.
- Ruiz Leal, A., 1972. Flora Popular Mendocina. Deserta 3, 3–296. (*Mulinum*: pp. 61-62, sheet 81, Fig. 309).
- San Martín, J.A., 1983. Medicinal plants in central Chile. Economic Botany 37, 216.